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To understand complex biological systems such as cells, tissues, or even the human body, it is not sufficient to 
identify and characterize the individual molecules in the system. It also is necessary to obtain a thorough 
understanding of the interaction between molecules and pathways. This is even truer for understanding 
complex diseases such as cancer, Alzheimer’s disease, or alcoholism. With recent technological advances 
enabling researchers to monitor complex cellular processes on the molecular level, the focus is shifting toward 
interpreting the data generated by these so-called “–omics” technologies. Mathematical models allow 
researchers to investigate how complex regulatory processes are connected and how disruptions of these 
processes may contribute to the development of disease. In addition, computational models help investigators 
to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental 
tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. Numerous 
mathematical methods have been developed to address different categories of biological processes, such as 
metabolic processes or signaling and regulatory pathways. Today, modeling approaches are essential for 
biologists, enabling them to analyze complex physiological processes, as well as for the pharmaceutical 
industry, as a means for supporting drug discovery and development programs. KEY WORDS: Systems biology; 
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edge of the human genome sequence 
researchers would be able to readily 
develop new therapies for treating human 
disease as yet has only partially been ful-
filled. The availability of a fully sequenced 
human genome is a prerequisite for 
elucidating the origins of complex 
human diseases, such as cancer, obesity,	 
Alzheimer’s disease, or alcoholism but	 
unfortunately is by no means sufficient 
to provide answers to all of the ques­
tions surrounding these diseases. 

In the meantime, further techno­
logical advances have led to a consid­
erable increase in the understanding 
of the workings of the human body 
under normal conditions and in various 
disease states. For example, transcrip-
tomic1 studies are shedding light on 

which genes are active in a given cell 
at a given time, proteomic studies are 
discovering which proteins are present 
and in what amounts, and analyses of 
the metabolome have begun to exam­
ine which metabolic processes occur 
under different conditions. Most 
importantly, however, this work has 
highlighted the fact that human genes 
and the proteins they encode do not 
work in isolation but are connected 
at various levels in networks and 

1 For a definition of this and other technical terms, see the
glossary, p. 84.

Over the last decade, DNA-
sequencing technologies have 
advanced tremendously, culmi-

nating in the deciphering of the com-
plete human genome in 2001 (Landers 
et al. 2001; Venter et al. 2001). This 
achievement is a major milestone in the 
understanding of human biology, as the 
human genome provides a catalogue of 
all human genes and associated molecules 
that are required for creating a living 
human being. To date, however, the 
availability of this “parts” list specifying 
most human biomolecules, including 
DNA, proteins, and RNA, has answered 
only some of the questions concerning 
the complex phenomena of human biol-
ogy, leaving many others unanswered. 
Moreover, the hope that with the knowl-
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pathways of varying complexity. A 
deeper understanding of these inter­
actions is pivotal for understanding 
human diseases and developing appro­
priate therapeutic approaches. One 
crucial element in this process is the 
generation of mathematical models 
that capture the often-unexpected 
features of complex biological systems. 
The development of these models is 
intimately linked to the generation of 
experimental data using various high-
throughput genomic, transcriptomic, 
proteomic, and metabolomic experi­
mental strategies. 

This article summarizes the challenges 
associated with the study of complex 
biological systems, the benefits of 
systems biology approaches, and the 
ways in which computational models 
can help consolidate and interpret 
the experimental data obtained using 
these approaches. These principles are 
exemplified by some concrete exam­
ples from current research projects. 

Blueprints of Life: Emergent 
Properties of a System 

The human body consists of approxi­
mately 1014 individual cells, each of 
which is itself a complex system compris­
ing thousands of different proteins and 
other biomolecules. The information 
specifying the composition and struc­
ture of virtually all of these molecules 
is encoded in the DNA. Although 
researchers now have information on 
all genes at hand, they still lack a deeper 
understanding of many seemingly 
common biological effects. The reason 
for this can be exemplified by an analogy 
with a modern passenger jet, another 
complex, yet man-made, system. Modern 
passenger jets consist of thousands of 
individual components, such as screws, 
wheels, cables, and other components 
that perform a specific function in a 
specific technical context. However, 
knowledge of those individual compo­
nents does not reveal functions that 
arise through interactions with other 
components, such as those related to 
takeoff, navigation, communication, 
or landing. To understand how a plane 
flies, one must know the interplay of 

the various components of the plane’s 
controls and the dynamic regulatory 
feedback loops that control this inter­
play. Similarly, the processes that occur 
in living organisms during growth, 
metabolism, and regulation of cell 
functions also are interrelated and 
require equally tight and coordinated 
control mechanisms. 

The characteristics of a complex 
system that arise from the interaction 
of various components are referred to 
as the emergent properties of the sys­
tem. Because they are the result of 
interactions between the different parts, 
these emergent properties cannot be 
attributed to any single part of the 
system. Thus, the ability of a passen­
ger jet to fly is not the consequence 
of one particular screw (even though 
this particular screw may be necessary 
for the plane to function). Similarly, 
the development of a complex disease 
(e.g., alcoholism) likely is not caused 
by a single gene, although a particular 
gene may be one of the elements nec­
essary for the disease to develop. Such 
a system is considered irreducible— 
that is, the system is unlikely to be 
fully understood by taking it apart 
and studying each part on its own. 
To understand irreducible systems and 
fully appreciate their emergent prop­
erties, one must study the systems as 
a whole. 

The publication of the human 
genome sequence provided biological 
scientists with a list of all the individ­
ual parts that make up the human 
body. However, just like having a pile 
of all the pieces of a passenger jet does 
not allow a technician to put together 
a functional plane without having a 
blueprint of the wiring scheme, this 
genome sequence is not sufficient to 
understand the interactions between 
the genes and their products. Advances 
over the last few years in transcrip­
tomics, proteomics, and metabolomics 
that allow investigators to monitor 
the biological response of cells, how­
ever, will allow studies of physiological 
systems as a whole in order to identify 
higher-level biological mechanisms 
encoded in the human genome (Brent 
2004) (see figure 1). 

“—Omics” Technologies: 
The Driving Force Behind 
Systems Biology 

A major reason for the advent of systems 
biology activities is that only recently 
analyses at the molecular level of the 
cell have become technically feasible on 
a larger scale. With the development of 
these new, large-scale technologies to 
identify and quantify molecules on the 
DNA, mRNA, protein, and metabolite 
level, researchers for first time are in a 
position to gather comprehensive data 
on the molecular state of a given bio­
logical system in a systematical manner. 
These technologies are sometimes 
collectively referred to as “–omics” 
technologies (see figure 2). In addition, 
new techniques to manipulate cells in 
a directed manner allow researchers to 
perturb biological systems under con­
trolled conditions. For instance, single 
genes can be deactivated and the global 
response of the modified cell can be 
observed at the protein, transcript, and 
metabolite level. Together, these experi­
mental techniques allow researchers to 
obtain a comprehensive picture of the 
cell’s function as well as of the role of 
the deactivated gene and its specific 
function. Such comprehensive and 
accurate experimental data are critical 
for developing and testing models of 
biological processes, and the data pro­
duced by –omics technologies are 
expected to guide the development 
of new and more complex models.  

The new –omics technologies are 
characterized by three distinct fea­
tures. First, they allow for analyses on 
different molecular levels, such as the 
DNA, RNA, protein, or metabolite 
level. These different molecular levels 
sometimes behave asynchronously— 
that is, although some proteins are 
highly abundant in a cell, the levels 
of the corresponding mRNAs from 
which they are produced may be very 
low or vice versa. Because asyn­
chronous behavior can indicate the 
effects of complex regulatory interac­
tions, it is important to examine the 
role and degree of synchronization of 
the transcriptome, proteome, and 
metabolome. For example, metabo­
lites produced in certain biochemical 
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pathways sometimes exert a feedback 
on key enzymes in the pathway by 
modifying the expression of the genes 
that encode these enzymes. The –omics 
technologies allow researchers to sys­
tematically discover such interactions 
and incorporate them into models 
aiming to capture the essential regula­
tory features of a pathway. 

Second, –omics technologies are 
highly parallelized. This means that 
for a single biological sample many 
different biological “readouts” can be 
measured simultaneously. For example, 
with today’s microarrays researchers 
can simultaneously measure the expres­
sion of virtually all genes of the organ­
ism being studied rather than having 
to perform numerous separate experi­
ments focusing on different genes. 
This parallelization enables scientists 
to detect not only the expected but also 
unforeseen responses of an organism. 
For example, microarrays in toxicology 

research allow for a broad screen for 
unexpected biological side effects caused 
by new drugs (Ulrich and Friend 
2002; Waters and Fostel 2004). The 
high degree of parallelization also allows 
researchers to elucidate functional 
interactions between different genes 
and proteins and obtain comprehen­
sive images of emergent properties of 
a cell or organism. This is particularly 
important for complex cellular process­
es such as the increase in the number 
of cells as a result of cell growth and 
cell division (i.e., proliferation), cell 
death (i.e., apoptosis), or the response 
to infection, all of which can involve 
several hundred different types of 
molecules. 

Third, –omics technologies are 
highly standardizable and thus amenable 
to a high degree of automation, allow­
ing researchers to handle and process 
large numbers of biological samples. 
The ease of sample processing and 

experimentation has a huge impact 
on how experimental studies are per­
formed today. For instance, compari­
son of larger numbers of replicate 
experiments allows researchers to vali­
date biological effects with a greater 
statistical certainty. The ease of use of 
–omics technologies is particularly 
relevant for clinical studies, in which 
large patient populations must be 
tested to obtain a sound statistical 
basis for confirming drug efficacy and 
identifying potential side effects. 

The huge amounts of data gathered 
require tools to automatically process, 
compare, and interpret the data in a 
manner that identifies the most relevant 
pieces of information and which can be 
used to generate models of, for example, 
regulatory or metabolic pathways. 
These tools include computerized 
data analysis strategies that result in the 
formulation of mathematical models 
of the biological systems analyzed. 
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Figure 1 Complex systems and the blueprints used to illustrate the complex interactions that occur between the different components 
of the systems. A) A modern passenger jet (top) is a complex technical system in which the combination of many parts 
results in complex technical features (emergent properties), such as flying or navigation. Technical blueprints, such as 
for the microchip used in the jet’s electronic control system (bottom), allow engineers to get an overview on the wiring 
scheme of the microchip. B) Human liver cells (top) are complex biological systems. Pathway maps (bottom) provide a 
high-level view of the complex networks of biochemical reactions (e.g., for detoxification) within liver cells. These pathway 
maps help researchers to visualize the interplay of the different molecules and understand the cell’s emergent biological 
properties. 

SOURCE: Hepatocytes from http://teaching.anhb.uwa.edu.au/mb140/ 
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Mathematical Models: Tools 
for Understanding Complex 
Biological Processes 

Biological systems are inherently complex, 
and many of their emergent properties 
result from the interplay of numerous 
molecular components. Moreover, bio­
chemical reactions often obey nonlinear 

reaction kinetics—that is, an increase in 
the amount of the starting material of 
the reaction does not necessarily lead to 
a proportional increase in the amount of 
the reaction product. Finally, other 
complexities, such as cell structure and 
compartmentalization or random (i.e., 
stochastic) effects, also often result in 
unexpected behavior of the entire system. 

Mathematical models that take these 
factors into consideration allow researchers 
to capture the features of complex bio­
logical systems and to understand how 
biological systems respond to external or 
internal signals and perturbations, such as 
different growth or development condi­
tions or stress triggered by agents such 
as alcohol. 
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Figure 2 The  –omics technologies gather information on numerous levels, including the genome, transcriptome (entirety of all 
genes that are converted into transcripts [i.e., mRNA molecules]), proteome (entirety of all proteins found in a given cell or 
tissue), metabolome (entirety of all metabolism products and intermediates in a cell or tissue), interactome (set of molecules, 
such as biologically active metabolism products, that interact with a given protein), and  phenome  (entirety  of  all  observable 
characteristics of an organism) levels. These data are collected using a variety of  complementary  technologies  such  as 
DNA microarrays or mass spectrometry (MS). The experimental data provide the structural and  dynamic  information  that  can 
then be used to generate mathematical formulas representing the observed reactions, leading to the development of 
comprehensive models and pathway maps. These in silico models allow researchers to evaluate the potential effects of 
modifications or perturbations in the system and to design further experiments for analyzing additional biological situa­
tions (e.g., potential side effects caused by a new drug). 

SOURCE: Adapted from Fischer, H.P. Towards quantitative biology: Integration of biological information to elucidate disease pathways and drug discovery. Biotechnology 
Annual Review 11:1–68, 2005. 
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Mathematical models have the big 
advantage of being amenable to com­
puter simulations. Models describing 
biological systems generally are too 
complex to be solved analytically 
(“manually”) and therefore typically 
are solved numerically—that is, using 
computers to solve the mathematical 
equations that help predict the response 
of a biological system. With the avail­
ability of computer-based techniques 
for solving mathematical equations, 
the response of a biological system to 
different conditions can be relatively 
easily simulated in silico once a math­
ematical model is available. These 
computer simulations (so-called “dry 
experiments”) in many cases require 
much lower investment and much less 
time compared with the typically 
more time-consuming and expensive 
biological experiments (sometimes 
referred to as “wet experiments”). 

The general approach for creating 
and using mathematical models in 
biological sciences is similar to the 
one followed in other scientific disci­
plines such as physics and provides 
the basis for communication between 
experimental and theoretical scientists. 
Thus, the theories and mathematical 
formulas developed by theoretical 
biologists on the basis of existing 
experimental data can be tested by 
experimentalists and used to predict the 
behavior of biological systems under 
as-yet-unexplored conditions. Any 
discrepancies between the predicted 
and measured results then need to be 
resolved, either by extending the the­
oretical framework (i.e., for instance 
by adding new equations to take into 
account other apparently important 
molecules that have not been considered 
in previous versions of the model) or 
by refining the experimental setup or 
data interpretation. 

Mathematical models for biological 
systems and the associated computer 
simulations offer numerous benefits. 
First, discrepancies between systems 
behaviors predicted by a mathematical 
model and actual behaviors measured 
in experiments can point to compo­
nents that still are missing from the 
mathematical model, thereby assisting 
in developing a more comprehensive 

picture of a biological process. And even 
if it is not clear which components are 
missing from the system under inves­
tigation, the results obtained with the 
mathematical model may help to guide 
the design of additional experiments 
to clarify the issue (see figure 3). 

Second, mathematical models provide 
a systematic approach for investigating 
systems perturbations—for example, 
those induced by drug administration, 
genetic alterations, developmental 
signals, or other factors. To this end, 
scientists can modify the values of the 
model parameters (e.g., by introducing 
modified enzyme activities associated 
with alcohol administration) and re-run 
the computer simulations. This approach 
is relatively straightforward once a 
reasonable base model is available. 

Third, mathematical simulations 
are not as limited by experimental 
constraints as wet experiments. 
Computer simulations can quickly 
investigate different experimental 
conditions for the biological system 
of interest, and only the most relevant 
cases can be assessed afterwards in the 
laboratory. This allows researchers to 
investigate novel scenarios and to develop 
hypotheses to guide the design 
of new and promising experiments. 
This approach is particularly helpful 
if the wet experiments are difficult 
and expensive to perform. The com­
bination of dry and wet approaches 
is at the heart of systems biology and 
already is being used widely in the 
metabolic engineering industry, which 
uses live cells (e.g., bacteria or cultured 
eukaryotic cells) to produce complex 
chemicals (e.g., precursors of drugs, 
vitamins, or amino acids) based on 
fermentation processes. In these cases, 
mathematical models are used to sug­
gest directed genetic modifications 
that may improve the productivity 
of the microorganisms. 

Fourth, mathematical models can 
be very helpful for systematically 
determining the relevance of a specific 
molecule or pathway for the overall 
behavior of the system. Not all com­
ponents of a reaction or pathway are 
equally important, and many biological 
processes are controlled by relatively 
small subsystems. Comparison of 

computer simulations and actual exper­
imental data may help the researcher to 
readily identify such simpler subsys­
tems that are sufficient to understand 
the features of the much more difficult-
to-treat full biological system. 

Mathematical Equations 
for Modeling Biological 
Systems Behaviors 

For choosing the optimal modeling 
approach it is essential to understand 
the nature of the biological process of 
interest because different mathematical 
frameworks have been developed for 
modeling the behavior of different types 
of biological systems. For example, 
most cellular phenomena are governed 
by dynamic processes so that the cell 
can adapt to environmental changes 
or control inherently dynamic cellular 
functions, such as periodic cell division. 
For describing such time-dependent 
phenomena, it is imperative to choose 
mathematical equations that can capture 
these dynamic effects. For other biolog­
ical processes, however, it often is not 
necessary to describe all the details of 
the underlying dynamics because some 
molecules’ concentrations do not change 
over time (i.e., are quasi-stationary). For 
most types of applications, appropriate 
modeling methods have been developed. 
Two examples are described below— 
modeling of metabolic processes and 
modeling of signaling and regulatory 
pathways. 

Modeling Metabolic Processes 
Metabolic processes are essential for all 
living organisms and provide the cell’s 
energy, deliver building blocks for the 
synthesis of larger molecules, or degrade 
toxic substances. Although biological 
research has focused on metabolism for 
several decades, many metabolic pro­
cesses still are not fully understood, and, 
in particular, the regulatory mechanisms 
controlling even well-investigated meta­
bolic pathways often are unknown. 

A key parameter in any metabolic 
study is the metabolic flux—that is, 
the conversion rate of metabolites 
along a metabolic pathway. For many 
research and industrial applications, 
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it is crucial to predict the metabolic 
flux patterns that indicate which bio­
chemical routes are utilized (e.g., to 
metabolize nutrients). Modeling tech­
niques are widely used in the field of 
metabolic engineering to identify any 
steps in the production of a desired 
molecule by cultured cells or bacteria 
that limit the overall rate with which 
the process occurs (i.e., so-called meta­
bolic  bottlenecks). The results of 
these analyses can guide researchers 
on how to genetically modify the cells 
or bacteria to optimize the yield of 
the desired end product (e.g., see 
Wendisch et al. 2006). In this setting, 
changes in metabolic fluxes over time 
are not a major concern because the 
fermenters used in the biotech industry 
typically operate in a steady-state, 
continuous flow situation and it there­
fore is sufficient for these applications 
to consider the fluxes in the cell to be 
quasi-stationary. 

A well-developed set of mathematical 
methodologies is available for a system­
atic analysis of such quasi-stationary 
metabolic phenomena. As an example, 
consider the process during which 
sugar is converted to amino acids. In 
this process, an enzyme called hexoki­
nase adds a phosphate group (i.e., 
phosphorylates) to the sugar glucose, 
yielding a compound called glucose-
6-phosphate. This reaction must be 
balanced in terms of atoms and elec­
trical charges. In a chemical notation, 
the balanced reaction is written as 
C 3- 2­

6H12O6 + ATP � C6H11O6PO3
+ ADP2- + H+. This indicates that 
both  sides of the equation are in a 
stoichiometric balance—that is, they 
contain the same number of carbon, 
hydrogen, or phosphorus atoms. 
When investigating more complex 
metabolic networks, each individual 
chemical reaction contributes a stoi­
chiometric balance constraint that 
can be formulated as a mathematical 
equation. However, the individual 
stoichiometric constraints are not 
independent  from each other. For 
example, reaction 1 produces a certain 
number of carbon atoms  that  then 
feed into reaction 2, and so on. 
Consequently, all mathematical equa­
tions representing the stoichiometric 

constraints must be solved simultane­
ously, and indeed there are many 
well-developed techniques to solve 
such sets of equations (for reviews, 
see Hornberg et al. 2007; Joyce and 
Palsson 2007). Interestingly, because 
stoichiometric constraints allow only 
for relatively few solutions, flux pat­
terns in quasi-stationary networks are 
relatively limited, which facilitates 
understanding metabolic processes. 

The validity of such mathematical 
models of metabolic networks can 
be tested through experiments using 
substances that are either radioactively 
labeled or otherwise detectable. For 

instance, a cell’s carbon flux patterns 
may be reconstructed by growing 
the cells in a medium that contains 
labeled carbon sources (e.g., the so-
called 13C-method) (Wiechert 2002) 
that will be taken up and metabolized 
by the cells. As the labeled substances 
enter into a metabolic network, their 
flux across several metabolites can be 
traced with nuclear magnetic resonance 
or mass spectrometry. By tracing the 
labeled atoms across a number of key 
metabolites, scientists can measure 
the cellular flux distributions, which 
can help validate or disprove meta­
bolic network models. 
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Figure 3 Schematic representation of the process of knowledge generation in 
systems biology. Experimental data on a given biological phenomenon 
serve to derive a mathematical model that leads to hypotheses regarding 
the effects of perturbation of the system. These hypotheses are tested in 
“dry” and “wet” experiments, leading to the generation of new data that 
may result in confirmation or modification of the hypothesis and the 
underlying mathematical models. 
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Modeling Signaling and Regulatory 
Pathways 
Signaling pathways serve as the cell’s 
central control machinery, which tightly 
regulates the cell’s response to external 
and internal stimuli. These pathways 
involve the transmission of external and 
internal signals through the cell’s mem­
brane and interior into the cell’s nucleus, 
where they activate or deactivate specific 
sets of genes. All of these processes are 
inherently dynamic events that require 
different mathematical modeling strate­
gies than the quasi-stationary (meta­
bolic) processes discussed above. 

Many signaling pathways are trig­
gered by the binding of extracellular 
biomolecules (e.g., hormones or growth 
factors) to a docking molecule (i.e., 
receptor) embedded in the membrane 
surrounding the cell. Receptors are 
proteins, often spanning the mem­
brane, which expose one part of their 
structure to the exterior environment 
(i.e., the extracellular space) and one 
part to the cell’s interior (i.e., the 
cytoplasm). If a signaling molecule 
binds to the extracellular region of 
the receptor, the receptor’s three-
dimensional structure may change— 
a process that can trigger cascades of 
biochemical reactions within the cyto­
plasm. These cascades often involve 
specialized signaling molecules such 
as enzymes known as kinases, which 
transfer phosphate groups from one 
molecule (the donor) to a specific target 
molecule (the substrate) and which 
are used extensively to transmit and 
integrate signals to control complex 
cellular processes. In many cases, 
kinases act on and modify the activity 
of specific proteins. The addition of 
the phosphate group changes the sub­
strate protein’s biochemical behavior 
so that it, in turn, can modify addi­
tional signaling molecules in the sig­
naling cascade. Ultimately, this chain 
reaction results in the activation of 
proteins called transcription factors 
that bind in the cell nucleus to DNA, 
triggering expression of distinct sets 
of target genes. It is this gene activa­
tion that alters the cell’s behavior and 
represents the cell’s response to the 
initial stimulus. 

Obviously, signal transduction is an 
inherently dynamic phenomenon, as 
the cell has to be able to flexibly respond 
to changes within the organism and in 
the environment. To model the dynam­
ics of signaling cascades such as those 
described above, researchers primarily 
rely on so-called differential equations 
(technically known as time-dependent 
ordinary or partial differential equa­
tions). Such differential equations are 
used to model the dynamic behavior 
of, for example, the changes in the 
concentration of signaling molecules 
over time as well as the signaling 
molecules’ distribution across different 
cellular compartments. Modeling of 
even relatively simple signaling networks 
has revealed that signal transmission 
through the cell often shows unexpected 
behaviors, such as periodic activation 
patterns or enhancement (i.e., amplifi­
cation) of the initial signals (Hoffmann 
et al. 2002; Swameye et al. 2003). A 
specific example of how regulatory pro­
cesses are being modeled is described 
in the accompanying sidebar, p. 56. 

Identifying Model Parameters 
Any equation in a mathematical model 
will contain one or more parameters that 
describe certain biophysical characteris­
tics of the molecules involved in the 
reaction or pathway being studied. For 
example, when modeling the dynamics 
of a network of biochemical reactions, 
the mathematical equations must 
incorporate parameters that reflect 
the kinetic properties of the involved 
enzymes—for example, the number 
of reactions the enzyme can perform 
during a given period of time (i.e., the 
rate constant). Researchers must know 
these kinetic parameters before they 
can set up well-defined systems of dif­
ferential equations representing appro­
priate models of biological processes. 

In principle, the kinetic parameters 
for all the relevant enzymes can directly 
be experimentally determined. In 
practice, however, many kinetic 
parameters, even for otherwise well-
investigated enzymes, still are unknown, 
primarily because the relevant experi­
mental data are lacking (i.e., the actual 
direct measurements of enzyme activ­

ity have not yet been performed). But 
even if the kinetic parameters have 
been measured, these data often are 
based on experiments performed in a 
test tube with purified enzymes (i.e., 
in vitro), and it is unlikely that the 
enzymes behave similarly under the 
conditions found in a living 
cell (i.e., in vivo). To overcome this 
limitation, one can use dynamic 
measurements of the overall system. 
Computational procedures are avail­
able to estimate the appropriate model 
parameters by testing different para­
meter sets until they fit the available 
experimental data. However, this pro­
cess is critically dependent on the 
quality of the experimental data, and 
unreliable experimental data will lead 
to unreliable predictions of kinetic 
parameters and therefore to models 
of very limited value (Schilling et al. 
2005). The lack of sufficiently large, 
high-quality experimental datasets 
still is a major hurdle in developing 
models even for relatively simple 
signaling networks. 

It must be pointed out that some 
biological phenomena cannot be 
described by using models that are 
just based on continuous concentra­
tion fields (described, for example, 
by partial differential equations), 
ignoring the existence and relevance 
of individual molecules. For instance, 
on a molecular scale random molecular 
movements can have a major impact 
on cellular processes. The molecules 
in a cell are closely packed, and ther­
mally induced random movements of 
these molecules as well as interactions 
between them can strongly affect the 
transmission of signals. To account for 
such effects, a random (i.e., stochastic) 
component must be integrated into 
the mathematical equations of the 
model. Particularly for rare signaling 
molecules, of which only a few copies 
may be present in the cell, the effects 
of such a stochastic component are 
significant and must not be neglected. 

Another issue that complicates 
modeling of biological systems is that 
the different components of a path­
way often act over different time and 
distance scales. For example, metabolic 
reactions can happen within seconds 
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Example for the Mathematical 
Modeling of a Signaling Pathway 

One important signaling factor is nuclear factor kappa B 
(NFκB), which regulates numerous processes relevant 
for inflammatory reactions, immune responses, cell pro­
liferation, and survival of the cell. NFκB is a transcription 
factor—that is, it activates specific genes required for these 
processes by binding to the DNA in front (i.e., upstream) 
of these so-called target genes. 

Because of its important functions in the cell, the 
levels and actions of NFκB must be tightly regulated. 
NFκB normally is found in the fluid filling the cell (i.e., 
the cytoplasm) and must move to the nucleus to exert 
its effects on its target genes. To prevent inappropriate 
movement of NFκB to the nucleus, the molecule 
normally is linked to a phosphate group (i.e., is phos­
phorylated) and interacts with proteins called inhibitory 
molecules of NFκB (IκBs). When the NFκB pathway 
is activated by another signaling molecule, IκBs are 
degraded, allowing NFκB to move to the nucleus and 
activate its target genes. One of these target genes codes 
for one of the inhibitory molecules, IκBα. Thus, NFκB 

activation leads to production of new IκBα, which can 
then bind to NFκB and shut off the NFκB pathway. 
This is known as a negative feedback loop. Continuous 
cycles of IκBα degradation and synthesis give rise to reg­
ular changes (i.e., oscillations) in NFκB activity that can 
be observed experimentally. Mathematical models have 
been used to investigate these oscillations in more detail, 
and comparisons between “dry” and “wet” experimental 
results generally have shown good agreement. The math­
ematical equations for modeling NFκB activation also 
have been used to identify potential contributions of 
other molecules that are thought to modulate the 
NFκB/IκB-mediated regulatory process. For example, 
modeling approaches using experimental data derived 
from mice in which specific IκB genes had been inacti­
vated (i.e., knocked out) demonstrated that certain IκBs 
had a damping effect on cyclic NFκB/IκBα oscillations 
(i.e., that the changes in NFκB/IκB activity became 
smaller over time) (Hoffmann et al. 2002). 
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As shown in the upper left panel, NFκB is part of a complex regulatory network that is, in part, controlled by the inhibitory fac­
tor IκBα. The cellular concentrations of the relevant molecular players over time can be expressed by formulas such as the 
one shown in the upper right panel. Experimental analyses of NFκB/IκBα activity over time found that the changes in 
NFκB/IκB activity became smaller over time (bottom left panel), in agreement with the predictions of the mathematical model. 
This temporal behavior of the pathway also can be expressed graphically (bottom middle panel), and detailed analysis of 
these experimental data and resulting graphs (bottom right panel) led to further refinement of the mathematical model. 

SOURCES: Hoffman et al. 2002, Lipniacki et al. 2004. 
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or minutes, whereas genetic regulatory 
processes that are induced by these 
metabolic reactions may occur over 
several hours or even days. Similarly, 
some regulatory reactions occur over 
small distances (e.g., across the width 
of the membrane surrounding a cell), 
whereas others involve greater distances 
(e.g., the entire cytoplasm of the cell, 
or between tissues where blood circu­
lation may transport signaling molecules 
such as hormones and activate specif­
ic cell types in remote tissues). To 
couple relevant effects occurring on 
very different length and time scales, 
researchers use so-called multiscale 
models as a compromise to avoid 
making the model overly complex. 

Finally, it is important to recognize 
that any model can be only as good 
as the assumptions upon which it is 
based. By definition, any model is an 
abstraction and simplification of real­
ity. All currently available, tractable 
mathematical models of biological 
systems neglect the majority of the 
molecular players in an organism. 
Moreover, all models make assump­
tions about relevant time and length 
scales. For example, the discussion 
in this article focuses on modeling 
approaches for cellular pathways that 
neglect molecular details (e.g., the 
exact location of the molecules in the 
cell, or the precise three-dimensional 
structure of the proteins). It is essen­
tial to keep these limitations in mind 
when discussing the value and validity 
of mathematical models or when 
developing a specific model to cap­
ture the characteristics of a given 
biological process. 

Outlook: Biomedical 
Applications of Systems 
Biology and Modeling 

Systems biology approaches have great 
potential for enhancing the drug discov­
ery and development process. Currently, 
the productivity of the pharmaceutical 
industry is lagging behind its investments 
in research and development. The out­
put of new chemical entities (“NCEs,” 
rather than “me-too” drugs that repre­
sent only minor modifications of already 

existing drugs), which is considered an 
indicator of the innovation potential of 
pharmaceutical research, is only slowly 
growing (Lindsay 2003). The whole 
process of developing, testing, and 
obtaining approval for a new drug now 
costs an average of approximately $900 
million for each drug that makes it to 
the market (Service 2004) and the pro­
cess can take more than a decade. As a 
result, companies look for more cost-
effective and less time-consuming alter-

A number of 
pharmaceutical 

companies recently 
have initiated 

dedicated systems 
biology programs to 

support their in-house 
drug discovery and 

development programs. 

natives to the traditional drug discov­
ery and development process. 

Systems biology is expected to play 
an increasingly important role in the 
establishment of innovative drug dis­
covery strategies. Today, the industri­
alized drug discovery process relies, to 
a large degree, on highly automated 
processes for screening the biological 
activity of large chemical libraries in 
order to identify new drug candidates. 
These screening assays enable a 
systematic assessment of candidate 
compounds by testing their activity 
on therapeutic targets—that is, bio­
molecules that are causally involved 
in disease outbreak or disease progres­
sion (Fischer and Heyse 2005). 

Systematic compound screening 
provides the starting point for further 
chemical development to optimize the 
drug-like features of the lead compound. 
Computational models of disease-
relevant pathways that allow for dry 
experiments to support the assessment 
of a candidate molecule’s safety and 
efficacy most likely will play an increas­

ingly important role in this process, 
and the pharmaceutical industry is 
greatly interested in establishing new 
predictive, computer-supported meth­
ods to systematically identify the most 
promising drug candidates. In this 
context, a number of pharmaceutical 
companies recently have initiated dedi­
cated systems biology programs to sup­
port their in-house drug discovery and 
development programs (Mack 2004). 

At the same time, an increasing 
number of publicly and privately 
funded initiatives and consortia aim 
at establishing systems biology in dif­
ferent domains of biological research 
to elucidate, for example, the func­
tions of specific cell types relevant for 
medical applications or to develop 
comprehensive systems biology appli­
cations for metabolic engineering. In 
most cases, multiple research centers 
or companies are integrated in a 
decentralized research network to 
which investigators from numerous 
disciplines (e.g., biology, genetics, 
biochemistry, physics, mathematics, 
computer sciences, statistics, or engi­
neering) contribute (see table, p. 58). 
One of the pioneering systems bio­
logy programs is the publicly funded 
German HepatoSys initiative, in 
which more than 40 German research 
centers cooperate in a joint program 
investigating the systems biology of 
the liver cell using numerous comple­
mentary approaches. The liver is an 
organ of great medical interest with 
relevance to many disease areas, 
including alcohol-related diseases. 
The different groups participating 
in HepatoSys apply a broad spectrum 
of technologies, ranging from 
classical cell biological methods to 
imaging, transcriptomics, proteomics, 
and metabolomics; in addition, sever­
al groups conduct dry experiments 
by applying pathway modeling to 
liver cell pathways. Within the 
overall consortium, different 
technology platforms are organized 
into subgroups, or networks, which 
focus on specific medically relevant 
themes, such as liver regeneration 
or detoxification processes. In a first 
step, the researchers seek to recon­
struct liver-specific pathways using 

Vol. 31, No. 1, 2008 57 



 

wet and dry methods. Later, liver 
metabolism and liver-specific signal­
ing and their roles in liver regenera­
tion and drug metabolism will be 
investigated. 

For HepatoSys and other systems 
biology consortia and research cen­
ters, it is essential that the different 
research groups are connected via a 
central, dedicated data transfer and 
exchange infrastructure to facilitate 
the close collaboration among groups 
and disciplines. Such an infrastruc­
ture must include a specialized data 
management system that allows the 
participating groups to deposit their 
wet and dry data in a central location, 

which is accessible to the experimen­
talists as well as to the modelers. 
Although the focus of publicly fund­
ed systems biology consortia primarily 
is on basic research, the results 
produced will likely also be critical 
for applications in the healthcare and 
biotechnology sectors. 

In summary, the various systems 
biology approaches developed in 
recent years provide an extraordinary 
amount of new information on many 
functions of human and other organ­
isms relevant to research and biotech­
nology applications. Only with the help 
of computerized modeling efforts, how­
ever, can researchers make sense of all 

the different bits and pieces of informa­
tion that are accumulating at an ever-
increasing pace. Just as an engineer 
can turn a heap of metal pieces, wires, 
screws, and bolts into a jet plane only 
if he has a comprehensive blueprint, 
biomedical scientists can understand the 
workings of living organisms only if they 
have comprehensive models that enable 
them to connect the often disparate 
pieces of information derived from 
experimental approaches. The Greek 
philosopher Aristotle said more than 
2,000 years ago, “The whole is more 
than the sum of its parts,” and today, 
systems biology research and model­
ing efforts are helping to obtain a 

Table Overview of Selected Systems Biology Consortia and Research Centers* 

Consortium/Center Country Goal/Background Participants Link 

HepatoSys Germany Systems biology of the 
liver cell 

German research centers www.systembiologie.de 

SysMap Germany Metabolism of microbial 
amino acid producers 

German industry and 
academic institutions 

Kluyver Centre Netherlands Improvement of microor­
ganisms for use in industrial 
fermentation processes 

Dutch academic 
institutions and 
industry partners 

www.kluyvercentre.nl 

BaSysBio Nine 
European 
countries 

Global transcriptional 
regulation in bacteria 

15 European research 
organizations 

www.basysbio.eu 

SysMo Six European 
countries 

Dynamic molecular pro­
cesses going on in 
single-cell microorganisms 

More than 50 
working groups 

www.sysmo.net 

Manchester 
Interdisciplinary 
Biocentre 

United 
Kingdom 

Cross-disciplinary 
approaches to diseases 
such as cancer, malaria, 
Alzheimer’s, and cystic 
fibrosis 

Multidisciplinary 
research groups 

www.mib.ac.uk 

Institute for Systems 
Biology 

USA Study of biological systems 
to increase understanding 
of the immune system and 
other biological systems 

Multidisciplinary 
research groups 

www.systemsbiology.org 

MIT Computational 
and Systems Biology 
Initiative 

USA Systematic analysis of 
complex biological 
phenomena 

More than 10 academic 
units across the 
Massachusetts Institute 
of Technology (MIT) 

www.csbi.mit.edu 

Kitano Symbiotic 
Systems Project 

Japan Understanding of system-
level principles of biological 
systems 

www.symbio.jst.go.jp 

* Links to additional groups involved in systems biology research can be found at http://www.systembiologie.de/de/links_researchgroups_international.html 
NOTE: Most consortia are publicly funded on a national or transnational level; some also are co-funded by industry partners. 
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more comprehensive understanding 
of life. ■ 
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